3.3.34 \(\int \frac {1}{\sqrt {a+b \tanh ^2(x)}} \, dx\) [234]

Optimal. Leaf size=31 \[ \frac {\tanh ^{-1}\left (\frac {\sqrt {a+b} \tanh (x)}{\sqrt {a+b \tanh ^2(x)}}\right )}{\sqrt {a+b}} \]

[Out]

arctanh((a+b)^(1/2)*tanh(x)/(a+b*tanh(x)^2)^(1/2))/(a+b)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.02, antiderivative size = 31, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.250, Rules used = {3742, 385, 212} \begin {gather*} \frac {\tanh ^{-1}\left (\frac {\sqrt {a+b} \tanh (x)}{\sqrt {a+b \tanh ^2(x)}}\right )}{\sqrt {a+b}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/Sqrt[a + b*Tanh[x]^2],x]

[Out]

ArcTanh[(Sqrt[a + b]*Tanh[x])/Sqrt[a + b*Tanh[x]^2]]/Sqrt[a + b]

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 385

Int[((a_) + (b_.)*(x_)^(n_))^(p_)/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Subst[Int[1/(c - (b*c - a*d)*x^n), x]
, x, x/(a + b*x^n)^(1/n)] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && EqQ[n*p + 1, 0] && IntegerQ[n]

Rule 3742

Int[((a_) + (b_.)*((c_.)*tan[(e_.) + (f_.)*(x_)])^(n_))^(p_), x_Symbol] :> With[{ff = FreeFactors[Tan[e + f*x]
, x]}, Dist[c*(ff/f), Subst[Int[(a + b*(ff*x)^n)^p/(c^2 + ff^2*x^2), x], x, c*(Tan[e + f*x]/ff)], x]] /; FreeQ
[{a, b, c, e, f, n, p}, x] && (IntegersQ[n, p] || IGtQ[p, 0] || EqQ[n^2, 4] || EqQ[n^2, 16])

Rubi steps

\begin {align*} \int \frac {1}{\sqrt {a+b \tanh ^2(x)}} \, dx &=\text {Subst}\left (\int \frac {1}{\left (1-x^2\right ) \sqrt {a+b x^2}} \, dx,x,\tanh (x)\right )\\ &=\text {Subst}\left (\int \frac {1}{1-(a+b) x^2} \, dx,x,\frac {\tanh (x)}{\sqrt {a+b \tanh ^2(x)}}\right )\\ &=\frac {\tanh ^{-1}\left (\frac {\sqrt {a+b} \tanh (x)}{\sqrt {a+b \tanh ^2(x)}}\right )}{\sqrt {a+b}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.02, size = 31, normalized size = 1.00 \begin {gather*} \frac {\tanh ^{-1}\left (\frac {\sqrt {a+b} \tanh (x)}{\sqrt {a+b \tanh ^2(x)}}\right )}{\sqrt {a+b}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/Sqrt[a + b*Tanh[x]^2],x]

[Out]

ArcTanh[(Sqrt[a + b]*Tanh[x])/Sqrt[a + b*Tanh[x]^2]]/Sqrt[a + b]

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(113\) vs. \(2(25)=50\).
time = 0.79, size = 114, normalized size = 3.68

method result size
derivativedivides \(\frac {\ln \left (\frac {2 a +2 b +2 b \left (\tanh \left (x \right )-1\right )+2 \sqrt {a +b}\, \sqrt {b \left (\tanh \left (x \right )-1\right )^{2}+2 b \left (\tanh \left (x \right )-1\right )+a +b}}{\tanh \left (x \right )-1}\right )}{2 \sqrt {a +b}}-\frac {\ln \left (\frac {2 a +2 b -2 b \left (1+\tanh \left (x \right )\right )+2 \sqrt {a +b}\, \sqrt {b \left (1+\tanh \left (x \right )\right )^{2}-2 b \left (1+\tanh \left (x \right )\right )+a +b}}{1+\tanh \left (x \right )}\right )}{2 \sqrt {a +b}}\) \(114\)
default \(\frac {\ln \left (\frac {2 a +2 b +2 b \left (\tanh \left (x \right )-1\right )+2 \sqrt {a +b}\, \sqrt {b \left (\tanh \left (x \right )-1\right )^{2}+2 b \left (\tanh \left (x \right )-1\right )+a +b}}{\tanh \left (x \right )-1}\right )}{2 \sqrt {a +b}}-\frac {\ln \left (\frac {2 a +2 b -2 b \left (1+\tanh \left (x \right )\right )+2 \sqrt {a +b}\, \sqrt {b \left (1+\tanh \left (x \right )\right )^{2}-2 b \left (1+\tanh \left (x \right )\right )+a +b}}{1+\tanh \left (x \right )}\right )}{2 \sqrt {a +b}}\) \(114\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a+b*tanh(x)^2)^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/2/(a+b)^(1/2)*ln((2*a+2*b+2*b*(tanh(x)-1)+2*(a+b)^(1/2)*(b*(tanh(x)-1)^2+2*b*(tanh(x)-1)+a+b)^(1/2))/(tanh(x
)-1))-1/2/(a+b)^(1/2)*ln((2*a+2*b-2*b*(1+tanh(x))+2*(a+b)^(1/2)*(b*(1+tanh(x))^2-2*b*(1+tanh(x))+a+b)^(1/2))/(
1+tanh(x)))

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*tanh(x)^2)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/sqrt(b*tanh(x)^2 + a), x)

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 329 vs. \(2 (25) = 50\).
time = 0.44, size = 1287, normalized size = 41.52 \begin {gather*} \text {Too large to display} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*tanh(x)^2)^(1/2),x, algorithm="fricas")

[Out]

[1/4*(sqrt(a + b)*log(-((a*b^2 + b^3)*cosh(x)^8 + 8*(a*b^2 + b^3)*cosh(x)*sinh(x)^7 + (a*b^2 + b^3)*sinh(x)^8
- 2*(a*b^2 + 2*b^3)*cosh(x)^6 - 2*(a*b^2 + 2*b^3 - 14*(a*b^2 + b^3)*cosh(x)^2)*sinh(x)^6 + 4*(14*(a*b^2 + b^3)
*cosh(x)^3 - 3*(a*b^2 + 2*b^3)*cosh(x))*sinh(x)^5 + (a^3 - a^2*b + 4*a*b^2 + 6*b^3)*cosh(x)^4 + (70*(a*b^2 + b
^3)*cosh(x)^4 + a^3 - a^2*b + 4*a*b^2 + 6*b^3 - 30*(a*b^2 + 2*b^3)*cosh(x)^2)*sinh(x)^4 + 4*(14*(a*b^2 + b^3)*
cosh(x)^5 - 10*(a*b^2 + 2*b^3)*cosh(x)^3 + (a^3 - a^2*b + 4*a*b^2 + 6*b^3)*cosh(x))*sinh(x)^3 + a^3 + 3*a^2*b
+ 3*a*b^2 + b^3 + 2*(a^3 - 3*a*b^2 - 2*b^3)*cosh(x)^2 + 2*(14*(a*b^2 + b^3)*cosh(x)^6 - 15*(a*b^2 + 2*b^3)*cos
h(x)^4 + a^3 - 3*a*b^2 - 2*b^3 + 3*(a^3 - a^2*b + 4*a*b^2 + 6*b^3)*cosh(x)^2)*sinh(x)^2 + sqrt(2)*(b^2*cosh(x)
^6 + 6*b^2*cosh(x)*sinh(x)^5 + b^2*sinh(x)^6 - 3*b^2*cosh(x)^4 + 3*(5*b^2*cosh(x)^2 - b^2)*sinh(x)^4 + 4*(5*b^
2*cosh(x)^3 - 3*b^2*cosh(x))*sinh(x)^3 - (a^2 - 2*a*b - 3*b^2)*cosh(x)^2 + (15*b^2*cosh(x)^4 - 18*b^2*cosh(x)^
2 - a^2 + 2*a*b + 3*b^2)*sinh(x)^2 - a^2 - 2*a*b - b^2 + 2*(3*b^2*cosh(x)^5 - 6*b^2*cosh(x)^3 - (a^2 - 2*a*b -
 3*b^2)*cosh(x))*sinh(x))*sqrt(a + b)*sqrt(((a + b)*cosh(x)^2 + (a + b)*sinh(x)^2 + a - b)/(cosh(x)^2 - 2*cosh
(x)*sinh(x) + sinh(x)^2)) + 4*(2*(a*b^2 + b^3)*cosh(x)^7 - 3*(a*b^2 + 2*b^3)*cosh(x)^5 + (a^3 - a^2*b + 4*a*b^
2 + 6*b^3)*cosh(x)^3 + (a^3 - 3*a*b^2 - 2*b^3)*cosh(x))*sinh(x))/(cosh(x)^6 + 6*cosh(x)^5*sinh(x) + 15*cosh(x)
^4*sinh(x)^2 + 20*cosh(x)^3*sinh(x)^3 + 15*cosh(x)^2*sinh(x)^4 + 6*cosh(x)*sinh(x)^5 + sinh(x)^6)) + sqrt(a +
b)*log(((a + b)*cosh(x)^4 + 4*(a + b)*cosh(x)*sinh(x)^3 + (a + b)*sinh(x)^4 + 2*a*cosh(x)^2 + 2*(3*(a + b)*cos
h(x)^2 + a)*sinh(x)^2 + sqrt(2)*(cosh(x)^2 + 2*cosh(x)*sinh(x) + sinh(x)^2 + 1)*sqrt(a + b)*sqrt(((a + b)*cosh
(x)^2 + (a + b)*sinh(x)^2 + a - b)/(cosh(x)^2 - 2*cosh(x)*sinh(x) + sinh(x)^2)) + 4*((a + b)*cosh(x)^3 + a*cos
h(x))*sinh(x) + a + b)/(cosh(x)^2 + 2*cosh(x)*sinh(x) + sinh(x)^2)))/(a + b), -1/2*(sqrt(-a - b)*arctan(sqrt(2
)*(b*cosh(x)^2 + 2*b*cosh(x)*sinh(x) + b*sinh(x)^2 - a - b)*sqrt(-a - b)*sqrt(((a + b)*cosh(x)^2 + (a + b)*sin
h(x)^2 + a - b)/(cosh(x)^2 - 2*cosh(x)*sinh(x) + sinh(x)^2))/((a*b + b^2)*cosh(x)^4 + 4*(a*b + b^2)*cosh(x)*si
nh(x)^3 + (a*b + b^2)*sinh(x)^4 + (a^2 - a*b - 2*b^2)*cosh(x)^2 + (6*(a*b + b^2)*cosh(x)^2 + a^2 - a*b - 2*b^2
)*sinh(x)^2 + a^2 + 2*a*b + b^2 + 2*(2*(a*b + b^2)*cosh(x)^3 + (a^2 - a*b - 2*b^2)*cosh(x))*sinh(x))) + sqrt(-
a - b)*arctan(sqrt(2)*sqrt(-a - b)*sqrt(((a + b)*cosh(x)^2 + (a + b)*sinh(x)^2 + a - b)/(cosh(x)^2 - 2*cosh(x)
*sinh(x) + sinh(x)^2))/((a + b)*cosh(x)^2 + 2*(a + b)*cosh(x)*sinh(x) + (a + b)*sinh(x)^2 + a + b)))/(a + b)]

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1}{\sqrt {a + b \tanh ^{2}{\left (x \right )}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*tanh(x)**2)**(1/2),x)

[Out]

Integral(1/sqrt(a + b*tanh(x)**2), x)

________________________________________________________________________________________

Giac [B] Leaf count of result is larger than twice the leaf count of optimal. 188 vs. \(2 (25) = 50\).
time = 0.51, size = 188, normalized size = 6.06 \begin {gather*} -\frac {\log \left ({\left | -{\left (\sqrt {a + b} e^{\left (2 \, x\right )} - \sqrt {a e^{\left (4 \, x\right )} + b e^{\left (4 \, x\right )} + 2 \, a e^{\left (2 \, x\right )} - 2 \, b e^{\left (2 \, x\right )} + a + b}\right )} {\left (a + b\right )} - \sqrt {a + b} {\left (a - b\right )} \right |}\right )}{2 \, \sqrt {a + b}} - \frac {\log \left ({\left | -\sqrt {a + b} e^{\left (2 \, x\right )} + \sqrt {a e^{\left (4 \, x\right )} + b e^{\left (4 \, x\right )} + 2 \, a e^{\left (2 \, x\right )} - 2 \, b e^{\left (2 \, x\right )} + a + b} + \sqrt {a + b} \right |}\right )}{2 \, \sqrt {a + b}} + \frac {\log \left ({\left | -\sqrt {a + b} e^{\left (2 \, x\right )} + \sqrt {a e^{\left (4 \, x\right )} + b e^{\left (4 \, x\right )} + 2 \, a e^{\left (2 \, x\right )} - 2 \, b e^{\left (2 \, x\right )} + a + b} - \sqrt {a + b} \right |}\right )}{2 \, \sqrt {a + b}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*tanh(x)^2)^(1/2),x, algorithm="giac")

[Out]

-1/2*log(abs(-(sqrt(a + b)*e^(2*x) - sqrt(a*e^(4*x) + b*e^(4*x) + 2*a*e^(2*x) - 2*b*e^(2*x) + a + b))*(a + b)
- sqrt(a + b)*(a - b)))/sqrt(a + b) - 1/2*log(abs(-sqrt(a + b)*e^(2*x) + sqrt(a*e^(4*x) + b*e^(4*x) + 2*a*e^(2
*x) - 2*b*e^(2*x) + a + b) + sqrt(a + b)))/sqrt(a + b) + 1/2*log(abs(-sqrt(a + b)*e^(2*x) + sqrt(a*e^(4*x) + b
*e^(4*x) + 2*a*e^(2*x) - 2*b*e^(2*x) + a + b) - sqrt(a + b)))/sqrt(a + b)

________________________________________________________________________________________

Mupad [B]
time = 1.57, size = 25, normalized size = 0.81 \begin {gather*} \frac {\mathrm {atanh}\left (\frac {\mathrm {tanh}\left (x\right )\,\sqrt {a+b}}{\sqrt {b\,{\mathrm {tanh}\left (x\right )}^2+a}}\right )}{\sqrt {a+b}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a + b*tanh(x)^2)^(1/2),x)

[Out]

atanh((tanh(x)*(a + b)^(1/2))/(a + b*tanh(x)^2)^(1/2))/(a + b)^(1/2)

________________________________________________________________________________________